

Cable fault location

Fault event-oriented maintenance of low-voltage and medium-voltage cables

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

- What are the causes of cable faults?
- What are the different cable types?
- Sequence cable fault location
- What solutions does BAUR offer?

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

From the annals of cable lore

The term "cable" originates directly from the Arabic and refers to a ship's rope.

The cables that were originally manufactured in the early days of electrification looked quite similar to a tarred ship's rope, as they were wrapped and insulated with gutta-percha stranding. Paper was later used for insulation.

کابل

Cable structure and faults

What are the causes of cable faults?

What causes damage to cables?

Corrosion/ageing of the sheath

Mechanical influences

Moisture due to sheath faults

Screen corrosion

Material defects

Ageing of contact surfaces and the semiconductor, delamination

Structural changes

Formation of trees

Electrochemical change to the internal semiconductor

Mechanical stress and contact corrosion on the phase

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Electronics

Causes of problems in XLPE cables

Other causes of cable faults

- Electrical changes, excessively high current, voltage, or load change
- Poor workmanship of joints and terminations
- Delamination, especially on PILC cables and joints
- Strong mechanical forces in the event of short-circuits
- Environmental influences on exposed cables
- Landslides and earth movement
- External damage (e.g. during excavation)
- Temperature fluctuations and overheating
- Severe bending
- Ageing effects

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

What are the different cable types?

Cable types

Paper-insulated mass-impregnated cables (PILC)

- Paper-insulated cables
- First technology for the mass production of cables
- A lot of experience required for assembly
- Still used for high-voltage cables
- Environmental problems due to the impregnating oil
- Lower sensitivity to problems

Lead sheath corrosion on a PILC cable

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

600 kilovolt HVDC mass-impregnated submarine cable

Material

PILC disadvantages

- Environmental problems (oil, lead)
- Installation is more difficult
- Servicing required (oil)
- Higher production costs
- Temporary self-healing

PILC problems

- Corrosion of the lead sheath
- Water/moisture
- Drying of the oil impregnation
- Oil migration on inclines
- Problems with joints
- Polymerisation hardening of the oil

PD traces in a dry paper cable

Partial discharge (PD) in paper-insulated cables Damp insulation

Water ingress Water ingress reduces the effective insulation thickness, the field strength and load in the residual insulation increase, and the dielectric strength

decreases. Gradual damage until failure

Voiding due to loss of oil

Due to the "disappearance" of the oil in certain places, the cable dries out, the insulation quality deteriorates, PD starts, and breakdowns are caused. The "melted" oil that subsequently flows in leads to temporary self-healing.

Partial discharge (PD) in paper-insulated cables

Dried out insulation

i

Spread of carbonised PD traces through the paper layers, radially as well as longitudinally over several metres.

As in the case of water ingress, the carbonised layers reduce the insulation quality.

With paper, this can take place over a long period of time until failure occurs.

XLPE/PE material

Cross-linked polyethylene (XLPE/PE)

- Very high dielectric strength
- Low transmission losses
- Outstanding dielectric properties
- Theoretical life expectancy > 50 years
- Allows a reduction in cable thickness
- Greater mechanical strength
- Higher operating temperature
- Easy and inexpensive to produce
- Easy processing and installation

Material

XLPE disadvantages

- Moisture encourages trees
- Sensitivity to HF/HV transients
- Requires correct handling
- First generation PE has just reached 20 years
- Testing with DC is pointless and harmful

XLPE problems

- Sheath faults/water ingress
- Ageing/water trees
- Impurities during production
- Mechanical damage
- Problems with joints

Tan
$$\delta$$

Tan δ
PD
PD
PD
PD
PD

Approach

Growth even at low field strength

н,

(< 1 kV/mm)

(15 - 20 years)

Very slow growth

No partial discharge

No directly visible effects

Water trees

Water tree growth in XLPE insulation

Water tree \rightarrow electrical tree

Water trees

Electrical tree

Breakdown

PVC material

PVC cable

- Predominantly used in LV installations
- Inexpensive
- Flexible
- Tolerates high temperatures
- High life expectancy
- Electrical trees are not critical
- Sometimes also used in MV systems
- High dielectric losses

Why do faults occur in the first place?

Type of cable fault

Insulation resistance measurement

- Low-resistive (R < 100 Ω) ISO
 Short-circuit (R < 10 Ω)
- High-resistive (R > 10 Ω) ISO
 Resistance faults
 Breaks
- High-resistive (R > ∞ Ω) DC breakdown detection

Voltage-dependent faults (breakdown faults)

• Earth faults – Leakage current due to sheath testing

Sheath faults Earth faults Faults between phase-phase or phase-screen

Defects in the outer sheath (PVC, PE) Screen or phase has contact with earth

Type of cable fault

Breakdown detection

Determination of the breakdown voltage between the phase and screen

- Phase 1 Neutral
- Phase 2 Neutral
- Phase 3 Neutral
- Phase 1 Phase 2
- Phase 2 Phase 3
- Phase 3 Phase 1

Breakdown testing is only performed between the core and screen! Exception: belted cables

Sheath testing

Voltage test on the sheath			
Test voltage	Test level	Test duration	
DC for cables according to VDE 0276 Part 620 HD 620 S2:2010, parts 0, 1, 10-C Extruded cables 10 - 30 kV	PVC sheath 3 kV PE sheath 5 kV	1 min	
DC for cables according to VDE 0276 Part 632 HD 632 S1 parts 1, 3D, 4D, 5D Extruded cables 36 - 150 kV	5 kV	1 min	

Cable fault location

titron® video

Sequence – cable fault location

Cable fault location sequence

= Subprocess

Safety procedure (in accordance with local standards and safety regulations)

= Cable fault location process

Fault analysis and insulation test

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Fault analysis Measurement of insulation resistance

Fault analysis

- Measurement of phase screen
- Measurement of phase phase
- Phase ground

Determination

- Which phase is affected?
- What type of fault?
- Which pre-location method?

Cable fault pre-location

Methods

Method	Fault characteristics
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks
Secondary/multiple impulse method (SIM/MIM)	High-resistive faults, breakdown faults
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults
Burn	High-resistive faults, "moist" faults
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required
3-phase current coupling	For branched cable systems
Bridge measurement	Low- and high-resistive faults, cable sheath faults

The electrical equivalent circuit diagram

The cable is made up of an infinite number of small cable elements R – series resistance L – series inductance G – parallel resistance

C – parallel capacitance

- C = capacitance per unit length in nF per km
- **G** = conductance per unit length in ohms per km
- L = inductance per unit length in mH per km
- R = resistance per unit length in ohms per km (loop resistance)

Methods

Method	Fault characteristics
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks
Secondary/multiple impulse method (SIM/MIM)	High-resistive faults, breakdown faults
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults
Burn	High-resistive faults, "moist" faults
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required
3-phase current coupling	For branched cable systems
Bridge measurement	Low- and high-resistive faults, cable sheath faults

Functional principle of TDR

The transmitted TDR pulse runs along the cable route.

Each impedance change reflects parts of the pulse back to the starting point,

where the pulses are recorded.

The time intervals of these reflections are converted into a distance.

The form of the reflection provides information about the type of impedance change and therefore the fault.

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Time Domain Reflectometry (TDR)

Time Domain Reflectometry (TDR)

Joint reflection

Influence of faulty resistors on the reflection image

Cable fault pre-location methods

Method	Fault characteristics			
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks			
Secondary/multiple impulse method	High-resistive faults, breakdown faults			
(SIM/MIM)				
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults			
Burn	High-resistive faults, "moist" faults			
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly			
	for long cable routes)			
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required			
3-phase current coupling	For branched cable systems			
Bridge measurement	Low- and high-resistive faults, cable sheath faults			

SIM/MIM – multiple impulse method

Combination of TDR and surge generator

 $I = t \times v/2$

SIM/MIM – multiple impulse method

Combination of TDR and surge generator

SIM/MIM – multiple impulse method

Combination of TDR and surge generator

First measurement: Positive reflection at cable end Second measurement: 20x negative reflection during breakdown at the fault location

Methods

Method	Fault characteristics			
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks			
Secondary/multiple impulse method (SIM/MIM)	High-resistive faults, breakdown faults			
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults			
Burn	High-resistive faults, "moist" faults			
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)			
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required			
3-phase current coupling	For branched cable systems			
Bridge measurement	Low- and high-resistive faults, cable sheath faults			

Conditioning SIM/MIM – application in the case of wet faults

Combination of surge conditioning and SIM/MIM

1. SIM/MIM result in wet joint state

5. SIM/MIM result after drying the fault

Cable fault pre-location methods

Method	Fault characteristics			
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks			
Secondary/multiple impulse method	High registive faults breakdown faults			
(SIM/MIM)	TIGHTIESISTIVE TAULS, DIEAKUOWITTAULS			
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults			
Burn	High-resistive faults, "moist" faults			
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)			
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required			
3-phase current coupling	For branched cable systems			
Bridge measurement	Low- and high-resistive faults, cable sheath faults			

Current coupling method (ICM)

Electronics

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Current coupling method (ICM)

Cable fault pre-location methods

Method	Fault characteristics			
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks			
Secondary/multiple impulse method	High-resistive faults, breakdown faults			
(SIM/MIM)				
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults			
Burn	High-resistive faults, "moist" faults			
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)			
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required			
3-phase current coupling	For branched cable systems			
Bridge measurement	Low- and high-resistive faults, cable sheath faults			

"Travelling wave method/decay method"

 $D = \frac{L}{2}$ - test lead

Decay method

Comparison SIM/MIM

ICM current coupling

- Most widely used HV fault location method
- Many details are visible (joints, cable end, etc.)
- Max. SSG voltage (typically 32 kV)
- Set measurement range to single cable length
- Connection cable length is automatically subtracted

- For long cables and faults in wet joints
- Max. SSG voltage (typically 32 kV)
- Measurement range is set to 5 to 10 times the cable length
- Increase gain
- Measure the length of a period
- First period is not used for the measurement ("ignition lag")
- Measured length is 7 to 15% too far due to varying v/2
- Connection cable length must be subtracted

Decay

- For cable faults where a high HV voltage is required
- It must be possible to load the faulty cable, and then produce a breakdown. Faults with leakage currents cannot be located.
- Measurement range is set to 5 to 10 times the cable length
- Reduce gain
- Measure the length of a period and divide by 2
- Connection cable length must be subtracted

What solutions does BAUR offer?

BAUR – solutions

Cable fault location systems – solutions

Low- and medium-voltage cables

- Cable fault pre-location
- Cable fault pin-pointing
- Sheath fault/earth fault pre-location
- Sheath fault/earth fault pin-pointing
- Sheath testing
- Syscompact 400/4000 systems
- shirla
- protrac[®]

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Cable fault location systems – solutions

Portable system solutions

Syscompact 400 portable

Standard Solution

 10 m connection cable permanently mounted

Syscompact 400 portable

Customer-specific solution

 Incl. surge capacitor, 4 kV for LV application

Syscompact 400 portable

Customer-specific solution

- Coaxial HV connection socket
- 25 m/50 m cables on portable drums

Cable test vans

 \rightarrow Combination of fault location/VLF testing and diagnostics

titron[®], transcable 4000

- Various control systems available
- transcable 4000
 - Semi-automatic system, 1-phase/3-phase
 - Automatic system, 3-phase

Fault location systems and solutions

Low-, medium-, and high-voltage network cable fault location vans

Reference: TNB Malaysia

Syscompact series fault location systems

- Mounted in local vehicles
 ✓ 54 systems delivered in 1994
 ✓ 17 systems delivered in 2005
 ✓ 15 systems delivered in 2010
- Portable fault location systems
 ✓ 26 systems delivered in 2012
 ✓ 7 systems delivered in 2013
 ✓ 5 systems delivered in 2022

Reference: SESB Sabah/East Malaysia

Fault location systems mounted in local vehicles

- ✓24 systems delivered in 2011
- ✓1 portable system delivered in 2013
- ✓25 systems delivered in 2015

Reference: SEC Saudi Arabia

Syscompact 3000 fault location systems

✓ 30 systems delivered in 2016

Fault location systems incl. VLF test systems

✓ 5 systems delivered in 2017

//3FUR

Riyadh City Administration Saudi Arabia

Syscompact 3000 fault location systems

✓10 systems delivered in 2017

Reference: Shangdong Power Grid China

Syscompact 2000 fault location systems

✓17 systems delivered in 2020

Reference: Zimbabwe Electricity Distribution Co.

Syscompact 2000 fault location systems

✓9 systems delivered in 2022

Reference: KEPCO Korea

Syscompact 4000 fault location + VLF system

- ✓15 systems delivered in 2009 and 2015
- ✓ 8 systems upgraded in 2022

Reference: Shenzhen Power Grid

Cable fault location system – fully automatic single phase system

✓9 systems delivered in 2022 - 2023

Reference: Enel SpA

Cable fault location system – fully automatic 3 phases system + VLF

✓6 systems delivered in 2022

Reference: Adani Mumbai

Cable fault location system – fully automatic single phase system + VLF + TD PD

✓ 5 systems delivered in 2018-2022

Reference: Enel SpA

Cable fault location system – fully automatic 3 phases system + VLF

✓6 systems delivered in 2022

Reference: Terna Italy

Fault location systems

Mounted in local vehicles
 ✓ 8 systems delivered in 2021

XL fault location systems

Mounted in container
 ✓ 6 systems delivered in 2020

Cable test van

- Combination of fault location/VLF testing and diagnostics
- titron[®] fully automatic system
 - ✓ Compact version
 - ✓1-phase
 - ✓3-phase

The new titron®

Ergonomic, practical and comfortable – the unit

- Heavy on features, light on its feet the 3.5 tonner that punches above its weight
- Simpler operation at the tap of a key or click of a mouse the software
- Rectify network faults more quickly the Smart Cable Fault Location Guide
- Create a high level of transparency at a low cost the diagnostics philosophy
- A single data chain from collection through to analysis home of diagnostics

The new titron®

Ergonomic, practical and comfortable – the unit

Advantages

- Enlarged work area
- Office-like feeling workspace optimised for measurement use

Features

Larger LED monitors

- 1 x 24"
- 1 x 19" or 2 x 19"

The new titron[®] in detail

Ergonomic, practical and comfortable – the unit

Advantages

- Comfortable and functional working environment
- Optimised workspace even when the test van is on site for extended periods

Features

- Adjustable seat with storage space
- With optional backrest

The new IRG 400 19"

Different versions to operate the system

Operation with a 15.6" notebook and the BAUR Software 4

NEW: Operation with a 10.1" tablet and our brand-new touch operated BAUR App BUI-F

The new IRG 400 19"

- Measuring unit built in a 19" system mounted blade
- Software controlled either via the approved BAUR IRG and system software 4 or completely new touch optimized BAUR App BUI-F
- The front end with a 10.1" industrial rugged tablet or standard 15.6" BAUR notebook
- Communications via Wi-Fi, allowing measurement from a convenient and safe position

The new IRG 400 19"

Key specifications

400 MHz

max. 60 V

89 dB

30 ns -10 µs

10 m - 1000 km

- Touch operation
- **Operation via Wi-Fi** by detachable notebook or tablet
- Large, bright 15.6" or 10.1" display
- Support of all Fault pre-location methods
- Range de-attenuation
- Data
- Sampling rate:
- Pulse width:
- Distance:
- Pulse amplitude:
- Dynamic range
- Integrated Voltage Filter

CAT IV/600 V in combination with fused CAT IV/600 V test leads

The new BUI-F

Special features:

- Length related gain
- Touch operation
- Step TDR
- 3-phased TDR
- Win-10 tablet

IRG 4000 integrated fault location software

Software functions

Open Street Map

Import/export of GIS cable data

// 3AUI	R File	View	Тос	ols	Help	Simulation	mod	e		
DASHBO	DARD	CABLE FAUL		Dashboard						
CABLE R	OUTES			Cable f	ault location	Ctrl+F		QU	IICK ACCESS	© Op
	7/S Vienna	Friedrichsgasse - K		Testing	and diagnostics	Ctrl+D			_	
	Z/S Vienna Z/S Vienna	Friedrichsgasse 48		Data ex	xchange	•		Export cable database		
$\hat{\mathbf{a}}$	Z/S Vienna 7/S Vienna	Friedrichgasse 48 -		Setting	ıs			Import cable database		
		Theahengasse 40		Voltage	e assistant			Export GIS data		
μ s	Salzburg, P Paris-Lodro	aris -Lodron Strasse on Strasse		System	information			Import GIS data	GE	OJSON
✓ Select cable route. For the fault analysis		~	Simulation mode		veen phases and shield: Insulation measurement					
	_			Start o	nline support sessi	ion				
					Chrisbarrasca			ipett		

IRG 4000 integrated fault location software

Interactive help menu

F1 help menu

Electronics

- Tool tip information menu
- Information for assistance at the current position

Fault analysis	>	Pre-location	\rightarrow	Pin-pi	einting	>	Report	
Carble voute Innobench			ngti <u>sta</u> n	We doily of propagation 5478	80.0 🔆 m/15	Normal voltage 38x30 18:200	T theses 3 T	Cobie Sala
Prese selector (1)	Start 📥						540 (e en
=	_							-
0- <u>-</u> 0 N				10 mg/s	_			-
SIN/MIM * Polem S	AQNESS of LENI Scient the press of Pr	e phase valuetar and shek "Start mee	animant.					
U You can deline test voltage parameters in the 'Stan	measurement ' dialog box before star	ting measurement				loo adha	0	ort measurement
Enskdown votinge 25.012010 (00)								
12-N 25012010 LOGI.		and the second second		i	_			
Finaledreen willings (5/03/03/000)								
Erroledown wollege Zhill 2013/05/97 FTR0 S 25/01/2013/05/92		Wheney	ver vou	would like to				
		villene	i ci jou	t vour currer	at 1			
		learn mo	re abou	t your curren				
		task, ju	ust press	s the F1 key.				
	1	1	Š.	1 1		1 1	- 1	
					80 m	1/µs	_	
.1N by right-clicking SIM/MI	м							
visible at the fault.		Release the high	voltage to	start the measur	ement.			
								_
0 m Volta	ige range	0 -	- 32 kV	HV generator		SSG	350 m	
Max	voltage	1	32,0 kV	Max. surge energ	Ŋ	2050		
L1 is	not connected. Fur	ther information						
						×		
Surg	e voltage	32 Informa	tion on phase	selection				
			Phase selecte	or	HV connec	tion socket		
Displaying the	e problem:		N L1		L	1 X		
L1 selected in s	oftware, bu	ıt 🚬 🗌	13					
not connected in reality.					0	0 B		
			<u> </u>		a la			
		6						
				A	5	A A	- I	
			0	0 0	17	8 6		

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Cable fault location app

Map or fault location mode

- Leads the operator to the fault location
- Control of the titron[®] test van

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

BAUR solution – XL cable fault location

Cable fault location expertise for land and submarine cables Reliable fault location for maximum cost effectiveness

Seabed

XL fault location system integrated in a container

- System mounted in a container
- High-performance DC voltage source, **110 KV** test voltage,
 300 500 km discharge capacitance
- Surge current generator 3000 J, burn down transformer 5.7 kVA, max. 90 A
- High-performance TDR, multi-method approach, differential decay method
- Extra-long connection cable for HV DC link

Cable fault pre-location methods

Method	Fault characteristics				
Time Domain Reflectometry (TDR)	Low-resistive faults, breaks				
Secondary/multiple impulse method	High-resistive faults, breakdown faults				
(SIM/MIM)					
Conditioning SIM/MIM	High-resistive faults, breakdown faults, "moist" faults				
Burn	High-resistive faults, "moist" faults				
Current coupling method (ICM)	High-resistive faults, breakdown faults (predominantly for long cable routes)				
Travelling wave method/ decay method	Voltage-ignited faults – if high voltage is required				
3-phase current coupling	For branched cable systems				
Bridge measurement	Low- and high-resistive faults, cable sheath faults				

Bridge measurement – application

Fault location of:

- Sheath faults in MV and HV cables, cause of water trees
- All types of resistance faults in MV cables, backup for TDR measurement
- Fault location in LV and control cables

Sheath and cable fault location by means of bridge measurement

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Bridge measurement – older forms of representation

Wheatstone circuit

Example

115 kV, cable characteristics

Plate, 175 mm² ~ 0.1 ohm/km series resistance

Residual current defines accuracy!

- \rightarrow 2 3 mA required
- \rightarrow at 10 kV = ~ 5 MOhm RF

Measuring bridge principle

The measuring bridges used in shirla are based on the basic principle of the Wheatstone bridge.

The bridge consists of two voltage dividers whose ratio in the balanced state corresponds to $\frac{R1}{R2} = \frac{R3}{Rx}$.

To achieve the balanced state, R2 is adjusted until measuring device G displays zero. When R1 - R3 are known, the value of RX is determined by the resistance ratios $RX = \frac{R2}{R1} * R3$

For the measuring bridges described below, RX represents the faulty cable and R3 represents another "auxiliary" cable.

Murray measuring bridge

Murray

Bridge measurement

Sheath fault pre-location, earth faults

Features

- Automated balancing of the measuring bridge
- Option of entering various cable sectors
- Fault distance result in [m] and [%] for the total cable length
- Automatic adjustment of measurement voltage and current

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Sheath test and fault location system shirla

- 1. Cable sheath testing up to 10 kV
- 2. Cable fault and sheath fault location up to 10 kV
- 3. Cable sheath fault pin-pointing up to 10 kV

Application

Location of...

- **Sheath faults** in medium- and high-voltage cables
- All resistive faults in medium- and high-voltage cables → Backup instrument
- Fault location in low-voltage and control cables

Cable tracing

Cable tracing

Determination of the cable route

Signal source: Audio frequency transmitter

3. Depth measurement

Cable tracing Protrac tracing set - AFP

- 1. Reduced downtime
- 2. Reduced risk of unnecessary excavations
- 3. Very simple and convenient operation
- 4. Precise depth measurement

Benefits...

- No need of manual alignment
- Deviation Alert eliminates misdirection
- **3D History track** for more accurate measurement seq.
- Tracing Compass keeps the user on track

Measure the depth reliably

Depth at the touch of a button

Direct display of the depth

45° depth measurement

Identify field distortions

Determine the depth easily via 45° measurement

The 3D space coil

- The 3D coil arrangement allows a immediate evaluation and comparison of all the coil data.
- Angular deviations can be used to determine the direction of the cable and thus to provide the Compass Tracing Guidance function
- X = Maximum coil (2x for direct depth measurement)
- Y = Minimum coil
- **Z** = Parallel coil (parallel to the cable path)

Detect changes quickly and easily

3D History Track provides simple visualisation

Selectable display of the historical data of 3D Space coils over a defined period of time or distance

Important data are visible for longer for comparison purposes

Simplified operation, especially for the complex short-circuit fault location

Differences and changes are more evident

Adjustable duration of display time, and storable by the Hold key

Each coil can be selected separately

3D Magnetic field response during Audio Frequency twist method on twisted cables.

In the twist mode, the 3D History Track shows the lay lengths and the deviation or interrupt of the regular 3 coil lay length based regular oscillation in the case of a joint or fault.

RCC

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

Samples of single coils.

Depending on the situation, the view of one single coil may be easier to evaluate As too many lines in one display can be confusing.

3D Magnetic field response during minimum distortion method for MV coaxial Cables.

During the tracing procedure the yellow (Minimum) and green (zero) lines must be a narrow as possible, thus guiding the user exactly on top of the cable. In opposition the magenta lines (Maximum) which will be spread wide apart.

Approaching a joint or the fault, the response of the lines will reverse their appearance simultaneously, thus indicating a disturbance in the electromagnetic field.

video

Identify changes in direction immediately Tracing Compass

Displays changes in the direction of the cable

Eliminates misdirection

Deviation Alert

Issues an alarm when the relationship between the upper or lower magnetic field lines changes

Assessment of the signal quality

Current indicator

The current indicator displays the quality of the signal in the cable

All advantages combined

C-Max

A combination of the maximum and inverted minimum signal provides a much clearer result.

Manual or automatic frequency setting

Precise cable fault pin-pointing

Cable fault pin-pointing

Precise location

Acoustic fault pin-pointing

Determination of the exact fault position Signal source: Surge generator

- For phase/sheath faults, phase/phase faults

Step voltage method

Determination of the exact fault position Signal source: High-voltage pulse pattern

- For sheath faults, earth faults

The thunder and lightning principle (coincidence method)

The distance between lightning and a thunderstorm can be estimated by counting the seconds between the flash of lightning and the sound of thunder. Sounds travels approx. 1 km in the air in around three seconds, the flash of light covers this distance in just 3 microseconds. If you divide the number of counted seconds by three, this gives you the approximate distance of the lightning in kilometres.

protrac® does the same in principle.

Coincidence method

The shortest time defines the correct position – not the volume!

Magnetic pick-up

- + acoustic signal
- ➔ Duration measurement
- ➔ Meter display

Protrac[®]

BAUR system for fast and precise cable fault pin-pointing

Protrac[®] Connections via Bluetooth

- 1. SVP step voltage probes
- 2. CU control unit
- 3. Bluetooth headphones
- 4. AFP audio frequency probe
- 5. AGP acoustic ground probe

Protrac[®]

Evaluation of the acoustic and electromagnetic signals

14.06.2022 7:28 am AGP + I A Ö 2,8 m 59 2,6 m 39 85 dB(A) 口》 ANS

You are to the left of the cable route and the cable fault is located approx. 2.6 m in front of you.

You are directly above the cable route and the cable

fault is located approx. 2.6 m in front of you.

You are directly above the cable route and the cable fault is located approx. 1.3 m behind you.

7:20 am

0,6 m

1,3 m

7:28 am

2,6 m

ANS

ANS

口》

A

39

14.06.2022

A

39

85 dB(A)

ACP A

AGP +

Ö

Ö

You are to the right of the cable route and the cable fault is located approx. 1.3 m behind you.

You are directly above the cable route and approx. 2.6 m from the cable fault.

A second measurement must be performed to determine the direction in which the fault is located.

You are directly above the cable route, but no acoustic signal has been detected.

Due to the lack of an acoustic signal, it is not possible to determine the distance from the fault and this is shown as

Cable pinpointing Protrac control unit - CU

- 1. Simple navigation with 3D presentation
- 2. Convenient operation without cable
- 3. Operator safety by integrated loudspeaker
- 4. Intuitive operation with touch display or encoder

- 1. Long-lasting operation whatever the environment
- 2. Convenient operation and flexibility
- 3. Noise suppression and mute function

"Acoustics" set

DC step voltage method

Detection of:

- Sheath faults
- All other earth-referenced cable faults

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

step voltage method with AC

Fault location with AC signal

No direction display unlike the DC method

- The receiver only indicates a minimum above the fault location
- CL 20 staff A-frame

Cable pinpointing Protrac step voltage probe - SVP

- 1. Automatic or manual adjustment to the step voltage
- 2. Wide measurement range from $1\mu V 220V$
- 3. AC or DC measurement
- 4. Automatic zero point adjustment of DC offset

Location of sheath and earth faults...

- History display of all changes in the step voltage measurements in the last 12 seconds
- Automatic offset compensation in DC mode
- Automatic filter
 - DC direct measurement
 - AC capacitive decoupling especially with distorted signals

ensuring the flow

"Step voltage" set

P

Sheath fault location in DC mode Protrac step voltage probe - SVP

Cable sheath fault to the left of the operator

Negative DC pulses (deflection to the left)

The increasing signal strength at the bottom of the touchscreen shows that you are moving closer to the cable sheath fault.

Cable sheath fault to the right of the operator

Positive DC pulses (deflection to the right)

The decreasing signal strength at the bottom of the touchscreen shows that you are moving away from the cable sheath fault.

"Step voltage" set

Sheath fault location in AC mode **Protrac step voltage probe - SVP**

Cable sheath fault to the left of the operator

The first half-wave of the signal has negative polarity.

The decreasing signal strength at the bottom of the touchscreen shows that you are moving away from the cable sheath fault.

Cable sheath fault to the right of the operator

The first half-wave of the signal has positive polarity.

The increasing signal strength at the bottom of the touchscreen shows that you are moving closer to the cable sheath fault.

"Step voltage" set

Cable identification

Aim of cable identification

Clear identification of the faulty cable, e.g. if lots of cables run parallel in the excavation area

Many possible applications

- With flexible Rogowski coil
- For 1- and 3-phase cables

Reliable signal detection through digital analysis of:

- Amplitude
- Phase synchronisation (time)
- Direction (polarity)

ATP to ensure safest signal recognition

Amplitude Phase synchronisation (time) Direction (polarity)

Connections possibility

Connection to live LV cable up to 400V

Signal injection through clamp

Fault marking and repair

Cable repair

Cable testing and diagnostics

RCC

RCC ELECTRONICS LTD. Licensed Canadian Distributors

Tel: 905-669-6644 Toll-free: 1-800-668-6053 Fax: 905-669-6645 E-mail: sales@rcce.com Website: www.rcce.com

... since 1945